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Abstract
We investigate the tangent-plane n-atic bond-orientational order on a
deformable spherical vesicle to explore continuous shape changes accompanied
by the development of quasi-long-range order below the critical temperature.
The n-atic order parameter ψ = ψ0ein�, in which � denotes a local bond
orientation, describes vector, nematic and hexatic orders for n = 1, 2 and 6
respectively. Since the total vorticity of the local order parameter on a
surface of genus zero is constrained to 2 by the Gauss–Bonnet theorem, the
ordered phase on a spherical surface should have 2n topological vortices of
minimum strength 1/n. Using the phenomenological model including a gauge
coupling between the n-atic order and the curvature, we find that vortices
tend to be separated as far as possible at the cost of local bending, resulting
in a non-spherical equilibrium shape, although the tangent-plane n-atic order
expels the local curvature deviation from the spherical surface in the ordered
phase. Thus the spherical surface above the transition temperature transforms
into ellipsoidal, tetrahedral, octahedral, icosahedral and dodecahedral surfaces
along with the development of the n-atic order below the transition temperature
for n = 1, 2, 3, 6 and 10 respectively.

1. Introduction

When surfactant molecules, or amphiphiles, which consist of molecules that combine both
polar and non-polar parts, are dissolved in a single solvent such as water, these molecules tend
to form bilayer membranes where the hydrophobic hydrocarbon chains of each monolayer are
aggregated in the middle of the bilayer to reduce the contact with the water. These membranes
are not covalently bonded, but are rather stabilized by weaker hydrophobic interaction. These
membranes can have characteristic sizes which may be much larger than those of a single
molecule. The sizes and shapes of these membranes can change as a function of temperature,
salinity and/or surfactant concentration. Depending on the physical conditions of the system,
these membranes can form random extended surfaces, regular periodic structures or closed
vesicles separating an interior from an exterior [1]. Furthermore, some bilayer membranes are
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prototypes of biological systems, although it should be noted that true biological membranes
have several kinds of amphiphilic molecules and greater complexity due to embedded proteins.

In a wide class of membranes, molecules are free in lateral motion within the membrane,
forming a two-dimensional fluid offering little resistance to changes in membrane shape.
Such membranes are physical examples of random surfaces, which can undergo violent shape
changes. Molecules in membranes can also exhibit varying degrees of orientational and
positional order including tilt (smectic-C), hexatic and crystalline orderings similar to those
found in free-standing liquid crystal films [2–4]. These ordered membranes provide fascinating
laboratories for the study of the coupling between order and geometry, analogous in many ways
to the coupling between matter and geometry in general relativity. The underlying cause of this
coupling is as follows. A field describing orientational order cannot be parallel everywhere if
it is forced to lie on a surface, such as that of a sphere, that curves in two directions having
non-zero Gaussian curvature. It could lower its energy by flattening the surface. An additional
complication arises when order develops on closed surfaces. A closed surface can be classified
according to its genus h: the number of handles. Orientational order on a closed surface
necessarily has topological defects (vortices) with total strength (vorticity) equal to the Euler
characteristic χ = 2(1−h) of the surface [5]. Tangent-planeorder on a sphere (torus) will have
vorticity 2(0), since a sphere (torus) has genus 0(1) respectively. The continuous development
of vector order on a deformable surface of genus zero will be accompanied by a continuous
change from spherical to ellipsoidal shape [6]. Since vortices are energetically costly, it may
be favourable for a closed physical membrane to transform into an open cylindrical structure
when tangent-plane algebraic order develops in response to changes in temperature or other
control variables [7]. Indeed, there are a number of experimental examples of shape changes
that may be explained by the development of tangent-plane order.

Orientational orders for smectic-C and hexatic liquid crystals are described by an n-atic
order parameter ψ = ψ0ein� with n = 1 and 6 respectively [8]. The existence of the Kosterlitz–
Thouless (KT) transition of the n-atic order on a deformable surface of genus zero is investigated
in [9]. In this paper we present the shape changes of a deformable surface of genus zero along
with the development of the n-atic order below the KT transition temperature from spherical
to non-spherical. An n-atic order parameter can have vortices of strength 1/n, and, since it is
generally favourable to form vortices of minimum strength, we expect 2n maximally separated
vortices of strength 1/n to be present in the ordered phase (low-temperature phase). Thus for
n = 1 we find two antipodal vortices, and for n = 2, 3, 6 and 10 we find vortices to be
located at the vertices of a tetrahedron, an octahedron, an icosahedron and a dodecahedron
respectively. This is consistent with the calculations on a rigid sphere [10]. Furthermore, we
find that the shape of the surface changes from spherical to prolate spheroidal, tetrahedral,
octahedral, icosahedral or dodecahedral respectively. The icosahedral surface shape shown in
figure 1 looks very similar to the surface of Sindbis virus [11]. The surface of Sindbis virus is
made up of 240 copies of two virus-encoded membrane glycoproteins (called E1 and E2). The
proteins are organized into trimers of E1–E2 pairs. Eighty of these trimers are linked together
to form an icosahedral structure. On the face of an icosahedral surface, E1–E2 pairs show
hexatic ordering, while at the vertices disclinations (vortices of hexatic order) of strength 1/6
are found.

In this paper, we present the explicit calculations, extending the results given in [6], for
the continuous shape changes accompanied by the the development of quasi-long-range order
below the critical temperature. In addition, we study another case of n-atic order with n = 10
which generates 20 vortices at the vertices of the dodecahedron and produces dodecahedral
shape changes. Our calculations are based on a phenomenological Hamiltonian for a complex
order parameter field whose coupling to shape occurs via a covariant derivative and via change
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Figure 1. Mean-field shapes of deformable surfaces of genus zero with vector (n = 1), nematic
(n = 2), triatic (n = 3), tetratic (n = 4), hexatic (n = 6) and decatic (n = 10) orders. Above the
mean-field transition temperature, the equilibrium shape is spherical for all n. Below the transition
temperature, the equilibrium shape depends on n and has polyhedral forms with 2n topological
vortices with strength 1/n located at the vertices of prolate sphere, tetrahedron, distorted cube,
octahedron, icosahedron, and dodecahedron respectively.

in the metric tensor [12]. The model is almost identical to the Ginzburg–Landau theory of a
type II superconductor except that vorticity is fixed by surface topology rather than energetically
determined by an external magnetic field. The ordering transition we find is very similar to the
transition from a normal metal to the Abrikosov vortex lattice in a superconductor, and indeed
our analysis follows very closely that of Abrikosov [13]. We find a highly degenerate set of
functions that diagonalize the harmonic Hamiltonian on a rigid sphere. This degenerate set has
exactly 2n zeros at arbitrary positions on the sphere and is very similar in form to the Laughlin
wavefunction of fractional quantum Hall effect [14]. This paper is organized as follows. In
section 2, we review fluid membranes briefly and describe their free energy as a function of
curvature. We introduce a tangent-plane orientational order parameter and its coupling to shape
fluctuations in section 3. In section 4, the Hamiltonian for a deformable spherical membrane
with n-atic order is presented and shapes for the cases n = 1, 2, 3, 4, 6 and 10 below the
transition temperature are given in a free energy minimization scheme. Discussions are given
in section 5.

2. Fluid membranes

Although fluid membranes can be composed of many different types of chemical and molecular
species, their behaviour (shapes, fluctuations, thermodynamics) can be understood from a
unified point of view that considers their free energy of deformation. If the membrane
were constrained to lie in a plane, the only relevant energy would be the compression of
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the molecules, that is, change of the average area per molecule. This is analogous to sound
waves in a three-dimensional fluid; there is no low-frequency response of the system to shear.
However, since the membrane can also deform in the normal direction, there is an additional
set of modes describing the conformations of the film. These out-of-plane deformations are
known as bending or curvature modes and the free energy associated with such modes is known
as the curvature free energy.

To construct the effective free energy for fluid membranes, it is convenient to introduce
general curvilinear coordinates u = {u1, u2} and the metric structure. Defining locally a
system of coordinates u on the membrane and denoting by R(u) the position of the point u in
bulk d-dimensional Euclidean space, the metric tensor gαβ(u) induced by the embedding is

gαβ(u) = tα(u) · tβ(u); tα = ∂R(u)

∂uα
, (1)

where tα is a tangent vector to the surface, and the element of area is

d A = d2u
√

g; g = det(gαβ). (2)

The extrinsic curvature tensor Kαβ is defined by

Kαβ(u) = Dα DβR(u), (3)

where Dα is a covariant derivative with respect to the metric gαβ . In general, Kαβ is normal
to the surface [3]. Therefore, in the particular case of a surface in R3, Kαβ is proportional to
the unit normal vector N to the surface and is written as

Kαβ = KαβN , (4)

where Kαβ is a symmetric tensor. We can discuss the curvature energy using symmetry
considerations. The free energy must be only a function of the field R(u), invariant under
displacements, rotations in Rd and reparametrization. Expanding in local terms involving
more and more derivatives and keeping only the terms relevant by naive power counting, the
most general form of the curvature energy Hκ up to quadratic order in the curvatures has only
three terms [1] and can be written in terms of the tension term and the mean and Gaussian
curvature terms

Hκ = τ

∫
d2u

√
g +

κ

2

∫
d2u

√
g(M − M0)

2 +
κ̄

2

∫
d2u

√
gG. (5)

Here, τ is the tension of membrane, M is twice the mean curvature, K α
α , and G is the Gaussian

curvature given by det K β
α . The tension term can be dropped since we consider the fluid

membrane which has vanishing tension and the Hamiltonian with the curvature energies was
discussed by Helfrich and Canham [15]. The mean curvature that minimizes the energy has a
value M0, termed the spontaneous curvature of the membrane. The energy cost of deviation
from the spontaneous curvature is the bending modulus, κ . The parameter κ̄, known as the
saddle-splay modulus, measures the energy cost of saddle-like deformation. The spontaneous
curvature describes the tendency of the bilayer membrane to bend. It is viewed to arise from
the fact that the two layers of the bilayer may not have the same number of molecules in the
outside part and the inside part of bilayer membrane. The bending moduli, κ and κ̄, arise from
the elastic constants determined by the head–head and tail–tail interactions. It is expected
that these moduli are sensitively dependent on the surfactant chain length but only weakly
dependent on the head–head interaction strength. The parameters M0, κ and κ̄ can be derived
from a simple microscopic model that incorporates both the changes in the area per molecule
and the curvature. We note that a stable membrane will always have κ > 0. However, the
sign of κ̄ can be either positive or negative. Membranes that prefer isotropic shapes where the
Gaussian curvature G > 0, such as spheres or planes, will have κ̄ > 0, while membranes that
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Table 1. The nth rank symmetric traceless tensors, Q(n), for n = 1, 2, 3, and 4 in d-dimensional
space.

Q(1)
i = mi

Q(2)
i j = mi m j − 1

d
δi j

Q(3)
i jk = mi m j mk − 1

d + 2
(δi j mk + δik m j + δ jkmi )

Q(4)
i jkl = mi m j mkml − 1

d + 4
(δi j mk ml + the other 5 permutations)

+
1

(d + 2)(d + 4)
(δi j δkl + δikδ jl + δil δ jk)

prefer saddle shapes where the Gaussian curvature G < 0 will have κ̄ < 0. One can show that
the requirement of a positive-definite quadratic term implies that membranes are only stable if
κ − 2κ̄ > 0; otherwise higher-order curvature terms are needed to stabilize the system. Since
we consider the spherical membrane whose topology is fixed, the Gaussian curvature energy
gives a constant contribution by the Gauss–Bonnet theorem

∫ √
gG = 2πχ = 4π(1 − h) and

can be dropped. Thus the free energy of the fluid membrane with fixed topology contains only
the bending curvature energy.

3. Orientational order

In a fluid membrane, molecules can flow freely to adapt themselves to any particular shape
of the surface. If correlations among the molecular positions of the molecules forming the
membrane exist, the molecules may exhibit in-plane crystalline order and form a kind of two-
dimensional solid. On the other hand, the molecules may exhibit a weaker order in which only
orientations are correlated at a long distance scale. Orientational order means that to each point
on the membrane is associated a preferred direction within the tangent plane of the membrane.
For example, the stable phase of the membrane at high temperature is generally the liquid
phase with no translational or orientational order for the hexatic order, or the smectic-A phase
in which molecular axes are normal to the surface for the vector order. At lower temperature,
the membrane can condense into a hexatic phase in which there is quasi-long-range six-fold
bond-angle order or into a smectic-C (Sm-C) phase in which molecules tilt relative to the
surface normal. To describe Sm-C (vector) and/or hexatic order, we introduce at each point
X(u) on the membrane a unit vector m(u) in the tangent plane of the membrane. For Sm-
C order, m(u) is a true vector, invariant under rotations of 2pπ (p is an integer) about the
unit surface normal N(u) erected at X(u). For hexatic order, rotations of m(u) by 2 pπ/6
about N(u) lead to physically equivalent states. More generally, we consider ‘n-atic’ order in
which rotations of m(u) by 2 pπ/n produce physically equivalent states. A two-dimensional
nematic with an in-plane symmetric traceless tensor order parameter is an example of a 2-
atic. Although we know of no physical realizations of other n-atics yet, we find it instructive
to consider how the development of such order affects morphological changes in spherical
vesicles for n = 1, 2, 3, 4, 6 and 10.

To describe the tangent-plane n-atic order, we introduce orthonormal unit vectors e1 and
e2 at each point on the membrane. e1(u) · m(u) = cos �(u) defines a local angle �(u).
n-atic order is then described by the order parameter ψ(u) = ein�(u), which can be related
to the nth rank symmetric traceless tensor constructed from the unit vector m. The nth rank
symmetric traceless tensors are the nth rank spherical tensors (table 1).

In general, there are 2n components in the nth rank spherical tensor Q
(n)

i1i2···in
on the tangent

plane since i1, i2, . . . , in can be either 1 or 2. By permutational symmetry, there are only (n +1)
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possible independent components. However, there are (n − 1) additional traceless conditions.
Hence, there are only two independent components in Q

(n)
i1i2···in

. The linear combination of
these nth rank spherical tensors

1,2∑
i1,i2,...,in

ikQ(n)

i1i2···in
, (6)

where k is the number of 2s in (i1, i2, . . . , in), becomes (m1+im2)
n where m1 = e1·m = cos �

and m2 = e2 · m = sin �. Thus the n-atic order parameter is described by

ψ =
1,2∑

i1,i2,...,in

ikQ(n)
i1i2···in

= ein�. (7)

Note that since �(u) depends on the choice of orthonormal vectors e1 and e2, the order
parameter ψ(u) does as well. This means that any spatial derivatives in a phenomenological
Hamiltonian for ψ must be covariant derivatives.

We now describe the Hamiltonian of the membrane with orientational order in a
reparametrization-invariant way. For a flat membrane the vector Hamiltonian corresponds
to the usual XY model

H = 1
2 Kn

∫
d2x ∂αm · ∂αm. (8)

Using the fact that any spatial derivatives must be covariant derivatives and

Dαm = (Dαmβ)tβ (9)

is the tangential component of ∂αm, one can show that the only possible free energy term for
m which respects this Z1 symmetry is

H = 1
2 K1

∫
d2u

√
gDµmα Dµmα. (10)

The dimensionless coupling constant K1 is the vector-order stiffness and measures the strength
of the coupling between the orientations of neighbouring vectors. We then generalize this XY -
like Hamiltonian for the vector order to the n-atic Hamiltonian using the nth-rank spherical
tensors. In general, the n-atic Hamiltonian can be written as

H = 1

2
Kn

∫
d2u

√
g

DµQ(n)α1···αn DµQ(n)
α1···αn

Q(n)α1 ···αn Q(n)
α1 ···αn

, (11)

where Kn is the n-atic rigidity. Using the spherical tensors in table 1, we find

Q(n)α1···αn
Q(n)

α1···αn
= 1

2(n − 1)
, (12)

and

DµQ(n)α1···αn DµQ(n)
α1···αn

= n2

2(n − 1)
Dµmα Dµmα, (13)

for n > 1. Hence, the Hamiltonian for the n-atic order becomes

Hn = 1
2 n2 Kn

∫
d2u

√
gDµmα Dµmα. (14)

In this form ofHn, we neglected all terms that are irrelevant at large distance by power counting.
Other terms such as mα K α

β K βγ mγ which couple m to the principal directions of curvature
of the membrane are not invariant under the global rotation by 2π/n of m, and are irrelevant
at large distance. Thus, this free energy has a full O(2) rotational symmetry. This is similar
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to the fact that a two-dimensional crystal with hexagonal or triangular structure has isotropic
elastic properties at large distance scale. For n-atics with n � 3, there is only one elastic
constant Kn . For n = 1 or 2, there are in general two elastic constants. For simplicity, we will
consider the single elastic constant approximation for all n-atics.

To describe this Hamiltonian in terms of a local angular order parameter �, at each point
we introduce two orthonormal vectors ea(u)(a = 1, 2) tangential to the membrane. This is
equivalent to introducing a zweibein ei

a(u) compatible with the induced metric gαβ(u). In
components,

ea = eα
a tα (15)

and the orthonormality ea · eb = δab implies

eα
a eβ

b gαβ = δab; eα
a eβ

b δab = gαβ. (16)

The angular order parameter is frustrated by the rotation of tangent vectors that occurs under
parallel transport on a curved surface. The amount of frustration is given by the gauge field
Aα , i.e. the covariant derivative of ea in direction α defines the gauge field Aα. Under parallel
transport in direction duα, each ea is rotated by an angle Aα duα. Thus the gauge field Aα is
defined by

Dαea = −Aαεabeb, (17)

where εab is the antisymmetric tensor with ε12 = −ε21 = 1. Aαεab is called the spin-connection
and describes how the basis vector ea rotates under parallel transport according to the Gaussian
curvature G of the surface. In fact, the curl of the gauge field Aα is related to the Gaussian
curvature by

ηαβ Dα Aβ = G, (18)

where ηαβ is the antisymmetric tensor density

ηαβ = N · (tα × tβ) = √
gεαβ,

ηαβ = gαα′
gββ ′

ηα′β ′ .
(19)

The covariant derivative of m = cos �e1 + sin �e2 is written as

Dαm = (Dαma)ea + ma(Dαea)

= (Dαma)ea − ma Aαεabeb

= (Dα�)(− sin �e1 + cos �e2) − Aα(cos �e2 − sin �e1)

= (Dα� − Aα)m⊥, (20)

where m⊥ = − sin �e1 + cos �e2 satisfying m · m⊥ = 0. Then the n-atic Hamiltonian is
written as

Hn = 1
2 n2 Kn

∫
d2u

√
ggαβ(∂α� − Aα)(∂β� − Aβ). (21)

This form of the free energy is invariant under local transformations �(u) → �(u) + �(u),
Aα(u) → Aα(u) + ∂α�(u). This gauge invariance corresponds to a local rotation of the
reference frame ea . In terms of the complex order parameter ψ , the Hamiltonian for n-atic
order becomes

Hn = 1
2 Kn

∫
d2u

√
ggαβ Dαψ(Dβψ)∗ (22)

where Dαψ = (∂α − in Aα)ψ . In this description, all n-atics have the same long-wavelength
elastic energy. Their properties can differ, however, because their topological excitations are
characterized by different winding numbers. Since we assume that in the disordered state the
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membrane forms a spherical shape and there is no topological deformation of the membrane
shape, order in ψ is necessarily accompanied by the topological excitations called vortices.
As the total winding vorticity of a vector field on a closed surface with h handles is equal to
the Euler characteristic χ = 2(1 − h), vector fields on the surface of a sphere (h = 0) have
total vorticity 2. The minimum winding number disclination for an n-atic is 1/n. The energy
of an individual disclination on both flat and curved surfaces is proportional to the square of
its winding number. It is therefore always favourable to form disclinations with the lowest
possible winding number. In addition, disclinations with the same sign repel each other. These
considerations imply that the ground state of a sphere with the tangent-plane n-atic order will
have 2n maximally separated disclinations of winding number 1/n.

4. Shape changes below the transition temperature

It has been shown that the structure of the KT transition of a vortex-monopole Coulomb gas
on a rigid sphere is the same as in the planar case [16]. For a fluctuating spherical surface,
there is an effective KT transition in a certain region in the parameter space (κ, Kn). In [9], it
has been shown that for n2 Kn/κ � 1/4 there exists a KT transition at the finite temperature
TKT = π Kn/2. To describe the phase transition and the corresponding shape changes, we
introduce the magnitude of the complex n-atic order parameter as in ψ = ψ0ein� and consider
the simplest long-wavelength Ginzburg–Landau Hamiltonian for the n-atic order parameter ψ

HGL =
∫

d2u
√

g

(
r |ψ|2 +

1

2
u|ψ|4

)
+

Kn

2

∫
d2u

√
ggαβ(∂∗

α + in Aα)ψ∗(∂β − in Aβ)ψ. (23)

This is similar to the Ginzburg–Landau Hamiltonian for a type II superconductor in an external
magnetic field,

Hsc
GL =

∫
d3x

(
r |ψ|2 + C|(∇ − ie∗A)ψ|2 +

1

2
u|ψ|4 +

1

8π
(∇ × A − H)2

)
(24)

where e∗ = 2e/h̄c. Both have a complex order parameter ψ with covariant derivatives
providing a coupling between ψ and a ‘vector potential’ A or Aα. In a magnetic field, the
superconductor can undergo a second order mean-field transition from a normal metal to
the Abrikosov vortex lattice phase with a finite density of vortices determined energetically by
temperature and the magnetic field H . The magnetic field is conjugate to the vortex number Nv

since
∫

d3x (∇ ×H) = L Nvφ0, where L is the length of the sample along H and φ0 = hc/2e
is the flux quantum. On a closed surface with n-atic order, there is a second-order mean-field
transition to a state with vortex number determined by topology rather than conjugate external
field. Thus, the mean-field n-atic transition on a closed surface is analogous to the transition to
an Abrikosov phase with a fixed number of vortices rather than fixed field conjugate to vortex
number. However, a Meissner phase with zero vortices does not exist because we do not have
an analogue for magnetic intensity H; rather topology fixes vortex number.

The complete Hamiltonian for n-atic order on a deformable surface is H = Hκ + HGL.
Using the spherical angles Ω = {θ, φ} for the local curvilinear coordinates u, the field ρ(Ω)

in R(Ω) = R0(1 + ρ(Ω))er can be expanded in Laplace series with spherical harmonic
components. Any isotropic change in R can be described by R0. In addition, uniform
translation which changes neither the shape nor the energy of the vesicle corresponds to
distortions in ρ with l = 1, and can be discarded by fixing the position of the centre of
mass of the vesicle. These considerations imply that ρ will have no l = 0 or 1 components in
the spherical harmonic expansion:

ρ(Ω) =
∞∑

l=2

l∑
m=−l

ρlmY m
l (Ω). (25)
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The shape and size of the vesicle are determined entirely by the parameters R0 and ρlm .
In spherical polar coordinates with origin at the centre of the vesicle, the metric is given

by

gαβ = ∂αR · ∂βR = R2
0{(1 + ρ)2 ḡαβ + ∂αρ∂βρ}; (26a)

ḡαβ =
(

1 0
0 sin2 θ

)
, (26b)

and hence

√
g = √

det gαβ = R2
0(1 + ρ)2 sin θ

√
1 +

( ∇ρ

1 + ρ

)2

(27)

where (∇ρ)2 = (∂θρ)2 + (∂φρ/ sin θ)2. The curvature tensor in the same representation is

Kαβ = N · Dα DβR = −R0√
1 +

( ∇ρ

1 + ρ

)2
kαβ (28a)

kαβ =

 1 + ρ − ∂2

θ ρ +
2(∂θρ)2

1 + ρ
cot θ∂φρ − ∂θ∂φρ +

2(∂θρ)(∂φρ)

1 + ρ

(kθφ = kφθ) (1 + ρ) sin2 θ − sin θ cos θ∂θρ − ∂2
φρ +

2(∂φρ)2

1 + ρ


 . (28b)

The reduced tensors ḡαβ and kαβ do not depend on R0. Therefore, R0 can be expressed as a
function of A and ρlm via the relation

A =
∫

d2u
√

g =
∫

R2
0 dΩ {(1 + ρ)2 + 1

2 (∇ρ)2 + O(ρ4)}

	 4π R2
0

{
1 +

1

8π

∞∑
l=2

l∑
m=−l

(l(l + 1) + 2)|ρlm |2
}
. (29)

In the disordered phase above TKT, ρ = 0 and R = R0. We will use the Hamiltonian H
expressed in terms of reduced parameters and the constant area A in our calculations of shape
changes below the second-order disordered-to-n-atic transition.

The Hamiltonian is a functional of ψ(Ω) and ρ(Ω) at the fixed area A. To find the
equilibrium form of ψ(Ω) and ρ(Ω), we need to minimize H over ψ(Ω) and ρ(Ω). There is
a considerable simplification if we restrict our attention to the neighbourhood of the transition
temperature TKT. Near the critical temperature, to order ψ4, the variation of the curvature
energy is of order κρ2. When this is comparable to the Ginzburg–Landau free energy for ψ ,
we only need to keep couplings of order ρψ2. If we set the spin-connection Aα = Āα +aα with
the rigid sphere contribution ( Āθ , Āφ) = (0,− cos θ), the Ginzburg–Landau Hamiltonian for
ψ becomes

HGL =
∫

dΩ R2
0(1 + 2ρ)(r |ψ|2 + 1

2 u|ψ|4)

+
Kn

2

∫
dΩ ḡαβ{(D̄αψ)∗(D̄βψ) + Jαaβ + O(ρ2|ψ|2)}, (30)

where D̄α ≡ ∂α + in Āα , and the current density is given by

Jα = in(ψ∗∂αψ − ψ∂αψ∗ − 2in Āα|ψ|2). (31)

Keeping the order of approximation consistent with |ψ|4 and ρ|ψ|2, the curvature energy is
given by

Hκ = κ

2

∫
dΩ [(∇2 + 2)ρ]2 (32)
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where the spontaneous curvature 1/R0 is used, and R2
0 can be replaced by A/4π . Hence the

Hamiltonian can be decomposed into H = H0[ψ] + H′[ψ, ρ]:

H0 =
∫

dΩ
A
4π

(
r |ψ|2 +

1

2
u|ψ|4

)
+

Kn

2

∫
dΩ (D̄αψ)∗(D̄αψ) (33)

which does not depend on ρ(Ω), and

H′ =
∫

dΩρ · A
2π

(
r |ψ|2 +

1

2
u|ψ|4

)
− Kn

2

∫
dΩ

ρ

sin θ
∂α(ηβα Jβ sin θ)

+
κ

2

∫
dΩ [(∇2 + 2)ρ]2 (34)

which contains ρ(Ω) with the metric ḡαβ taken on the unit sphere. Thus the full terms, up to
quadratic in ρ, can be rearranged in ascending powers of ρ:

H = H0 +
∫

dΩ ρ(Ω)�̃(Ω) +
κ

2

∫ ∫
dΩ dΩ′ ρ(Ω)M(Ω,Ω′)ρ(Ω′) (35)

with

�̃(Ω) = A
2π

(
r |ψ|2 +

1

2
u|ψ|4

)
− Kn

2 sin θ
∂α(η

βα Jβ sin θ) (36)

M(Ω,Ω′) =
∞∑

l=2

l∑
m=−l

Y m∗
l (Ω)(l − 1)2(l + 2)2Y m

l (Ω′). (37)

By completing the square with respect to the ρ(Ω) field, the minimum energy configuration,

ρ(Ω) = − 1

κ

∫
dΩ′ M−1(Ω,Ω′)�̃(Ω′), (38)

is obtained. The inverse differential operator M−1 satisfies the orthonormality condition∫
dΩ′ M(Ω1,Ω′)M−1(Ω′,Ω2) = δ(l�2)(Ω1 − Ω2) (39)

where δ(l�2)(Ω1 − Ω2) is the Dirac delta function in spherical harmonics space with l � 2.
Substituting this relation into H, we have the effective Hamiltonian with the ψ field only

Heff =
∫

dΩ
{

A
4π

(
r |ψ|2 +

1

2
u|ψ|4

)
+

Kn

2
(D̄αψ)∗(D̄αψ)

}

− 1

2κ

∞∑
l=2

l∑
m=−l

|�̃lm |2
(l − 1)2(l + 2)2

, (40)

where

�̃lm =
∫

dΩ Y m∗
l (Ω)�̃(Ω). (41)

Before proceeding with our analysis of the n-atic transition on a deformable sphere, it
is useful to recall Abrikosov’s calculation of the transition to the vortex state. The first step
is to calculate the eigenfunctions of the harmonic part of HGL when ∇ × A = H . These
can be divided into highly degenerate sets separated by an energy gap, h̄ωc = 2Ce∗H . In
the Landau gauge, say A = (0, H x, 0), the eigenfunctions in the lowest energy manifold are
ψk = eikye−e∗ H (x−xk )

2
where xk = k/e∗H . The order parameter ψ(x) of the ordered state

is expressed as a linear combination ψ(x) = ∑
αkψk , where the complex parameters αk are

determined by minimization of HGL.
With this analogy in mind, we will follow Abrikosov’s treatment of the superconducting

transition near Hc2 to study the development of n-atic order on a sphere. We first diagonalize
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H in the harmonic level, that is, we determine the functions ψ which satisfy Kn Dα Dαψ = εψ

for ρ = 0 and Aα = Āα. Nonlinearities arise from the |ψ|4 term in the Ginzburg–Landau
Hamiltonian for ψ and from the fact that Aα and gαβ depend nonlinearly on the deviation from
the ideal spherical shape. To minimize Heff , we first seek the lowest energy configurations
of the operators corresponding to the harmonic terms only. Then, we linearly combine these
eigenfunctions to get the function which has the lowest energy for Heff . That is, the manifold
of the lowest energy eigenstates of the harmonic terms is highly degenerate. Nonlinear terms
pick out the lowest energy state that is a linear combination of the degenerate eigenstates of
the harmonic terms and lift the degeneracy. We divide Heff into a harmonic part, Hhar , and a
nonlinear part, Hnl as follows:

Hhar =
∫

dΩ
{
A
4π

r |ψ|2 +
Kn

2
(D̄αψ)∗(D̄αψ)

}
; (42)

Hnl = A
4π

∫
dΩ

1

2
u|ψ|4 − 1

2κ

∞∑
l=2

l∑
m=−l

|�̃lm |2
(l − 1)2(l + 2)2

, (43)

where the covariant Laplacian for Hhar is

�̄ = �|ḡαβ
= 1√

ḡ
(∂α − in Āα)

√
ḡḡαβ(∂β − in Āβ)

= ∂2
θ + cot θ∂θ + cosec2 θ∂2

φ + 2in cosec θ cot θ∂φ − n2 cot2 θ (44)

in the spherical polar representation.
Now then, for disclinations at Ω j ≡ (θ j , φ j ) specifying the position of the j th zero of ψ ,

we have

|ψ|2 = ψ2
0

N ({Ω j })
2n∏
j=1

1 − cos ω j

2
≡ ψ2

0

N ({Ω j })W (Ω; {Ω j }) (45)

where cos ω j = cos θ cos θ j +sin θ sin θ j cos(φ−φ j) = Ω·Ω j is the direction cosine, andN is
the normalization factor such that

∫
dΩ W (Ω; {Ω j }) = N ({Ω j }); (W (Ω; {Ω j }) is derived in

appendix A).
Since ψ of equation (A.11) is the most general function in the lowest energy manifold,

the order parameter and vesicle shape just below the transition temperature are obtained by
minimizing Heff over ψ0 and the positions of zeros. Inserting this expression for ψ ,

Heff [ψ, {Ω j }] = A
4π

∫
dΩ

(
(r − rc)|ψ|2 +

1

2
u|ψ|4

)
− 1

2κ

∞∑
l=2

l∑
m=−l

|�̃lm |2
(l − 1)2(l + 2)2

(46)

where rc = −2πnKn/A, and from equation (36)

�̃(Ω) = −nKn

(
(1 − n)|ψ|2 + 2

∣∣∣∣∂ψ

∂θ

∣∣∣∣
2)

≡ −nKnψ
2
0

N
�(Ω) (47)

with

�(Ω; {Ω j }) =
{

1 − n +
1

2

2n∑
j,k

cos ω jk − cos ω j cos ωk

(1 − cos ω j )(1 − cos ωk)

}
W (Ω; {Ω j }). (48)

If we define

r̃({Ω j }) = (r − rc)

∫
dΩ W (Ω; {Ω j }); (49a)

ũ({Ω j }) = u
∫

dΩ W 2(Ω; {Ω j}) − 4πn2 K 2
n

κA

∞∑
l=2

l∑
m=−l

|�lm |2
(l − 1)2(l + 2)2

, (49b)
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Table 2. The coefficients c(n)
m .

m c(2)
m c(3)

m c(4)
m c(6)

m c(10)
m

2 — — −2.19 × 10−4 — —

3
4
√

7π

945
— — — —

4
4
√

π

3645

√
π

297
−3.51 × 10−3 — —

5 — — 1.28 × 10−3 — —

6 —

√
13π

60 060
2.31 × 10−4 15 488

√
13π

275 559 375
− 15 488

√
13π

275 559 375
7 — — 8.30 × 10−5 — —
8 — — −1.84 × 10−5 — —

10 — — —
256

√
21π

692 803 125
− 256

√
21π

692 803 125

12 — — — − 512
√

π

6834 953 125

512
√

π

6834 953 125

minimization over the magnitude leads to ψ2
0 = −N r̃/ũ and the corresponding effective free

energy density,

F({Ω j }) = − 1

8π

r̃2({Ω j })
ũ({Ω j})

= − (r − rc)
2N 2

8πu

[∫
dΩ W 2 − 4πn2 K 2

n

uκA

∞∑
l=2

l∑
m=−l

|�lm |2
(l − 1)2(l + 2)2

]−1

, (50)

depends only on the positions {Ω j } of the zeros of ψ(Ω). The final step is to minimize
F({Ω j }), or ũ({Ω j}), with respect to the vortex configuration {Ω j}. Once we get the minimum
configuration, shape changes are described by ρ(Ω) = ∑∞

l=2

∑l
m=−l ρlmY m

l (Ω) with

ρlm = − 1

κ(l − 1)2(l + 2)2

∫
dΩY m∗

l (Ω)�̃(Ω) = nKnψ
2
0

κN ({Ω j})
�lm({Ω j })

(l − 1)2(l + 2)2

∣∣∣∣
ψ2

0 =−r̃N /ũ

,

(51)

which is derived from equation (38).
In the disordered phase ψ0 = 0, and ρ = 0, which signifies the vesicle of the spherical

shape. In the low-temperature phase of quasi-long-range order, we have been able to evaluate
F[{Ω j }] analytically for n = 1 and 2. For these two cases, we find that the minimum energy
configurations are those with zeros of ψ(Ω) at opposite poles and at the vertices of a tetrahedron
respectively. The shape function ρ(Ω) = (nKnψ

2
0 /κ)ρ̄(n)(Ω) associated with n-atic order is

proportional to ψ2
0 ∼ |r − rc| to the order of our calculations. In general, the Legendre

decomposition of ρ̄(n) will contain Legendre polynomials of order 2n. For n = 1 and 2, we
find

ρ̄(1) =
√

5π

20
Y 0

2 (52)

with antipodal configuration of vortices, and

ρ̄(2) = c(2)

3

{
Y 0

3 +
√

2
5 (Y 3

3 − Y −3
3 )

}
+ c(2)

4

{
Y 0

4 −
√

10
7 (Y 3

4 − Y −3
4 )

}
(53)

with each azimuth of the bottom triangle of vertices at ±π/3 and π . Table 2 gives coefficients
c(n)

m and figure 1 shows the shapes described by these functions. The transformations from
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the initial spherical shape to distorted shapes occur continuously. Our calculations for the
shape are valid to order (r − rc). With lowering temperature, higher-order terms in (r − rc)

and higher-order spherical harmonics are needed to describe the equilibrium shape. In [7], a
variational function for ψ and spherical harmonics up to order l = 8 were used to calculate
the shape for n = 1 for temperatures well below the transition.

For n = 3, 6 and 10 we found the zeros of ψ(Ω) to lie, respectively, at the vertices of an
octahedron, an icosahedron and a dodecahedron. The shape functions are given by

ρ̄(3) = c(3)

4

{
Y 0

4 +
√

5
14 (Y 4

4 + Y −4
4 )

}
+ c(3)

6

{
Y 0

6 −
√

7
2 (Y 4

6 + Y −4
6 )

}
, (54)

ρ̄(6) = c(6)

6

{
Y 0

6 −
√

7
11 (Y 5

6 − Y −5
6 )

}
+ c(6)

10

{
Y 0

10 +
√

33
13 (Y 5

10 − Y −5
10 ) +

√
187
247 (Y 10

10 + Y −10
10 )

}
+ c(6)

12

{
Y 0

12 −
√

286
1071 (Y 5

12 − Y −5
12 ) +

√
247
357 (Y 10

12 + Y −10
12 )

}
, (55)

ρ̄(10) = c(10)

6

{
Y 0

6 +
√

7
11 (Y 5

6 − Y −5
6 )

}
+ c(10)

10

{
Y 0

10 −
√

33
13 (Y 5

10 − Y −5
10 ) +

√
187
247 (Y 10

10 + Y −10
10 )

}
+ c(10)

12

{
Y 0

12 +
√

286
1071 (Y 5

12 − Y −5
12 ) +

√
247
357 (Y 10

12 + Y −10
12 )

}
. (56)

For n = 4, we can see that the zeros lie at the vertices of a distorted cube obtained by
compressing the top and bottom faces along its fourfold axis and twisting the faces about
that axis by π/4. For this case, we minimized the energy over two parameters describing the
separation and relative rotation between the top and bottom faces and obtained

ρ̄(4) = c(4)

2 Y 0
2 + c(4)

4 Y 0
4 + c(4)

6 Y 0
6 + c(4)

5 (Y 4
5 + Y −4

5 ) + c(4)
7 (Y 4

7 + Y −4
7 )

+ c(4)

8 {Y 0
8 − 0.578 715(Y 8

8 + Y −8
8 )}. (57)

5. Discussions

We have presented the general n-atic Hamiltonian in terms of the nth-rank spherical tensors
and an analysis of the mean-field transition to n-atic order on a fixed-area surface of genus zero
with the corresponding continuous shape changes. We are dealing with two kinds of order:
the n-atic and the positional order of vortices. In the mean field theory, these two kinds of
order develop simultaneously. Below the transition temperature, we have found not only the
n-atic order developing but also the positional ordering of the positions of vortices and the
corresponding shape changes. Since our results are based on the mean field theory, all the
shapes are the shapes averaged over thermal fluctuations. For n = 1, 2, 3, 6, and 10, we have
found the shape changes into ellipsoidal, tetrahedral, octahedral, icosahedral and dodecahedral
shapes respectively. However, for n = 4 we have found a distorted cubic shape instead of
the cube which we might expect naively. Our result for n = 4 shows that vortices lie at the
vertices of a distorted cube obtained by rotating its top face by π/4 about its four-fold axis and
compressing opposite faces. We are certain about the rotation angle π/4 for the equilibrium
shape, but our result for the compressing or stretching of opposite faces is not conclusive
since our analysis is to the lowest non-trivial order and it seems that compression or stretching
depends on the order of the approximation. Thus, further analysis of the 4-atic-order shape
change is necessary.

Our analysis is very similar to that of Abrikosov for the transition from a normal-to-vortex
lattice transition of a type II superconductor at Hc2 with the effects of fluctuations ignored.
The Abrikosov phase is to the n-atic phase with bond-orientational order what the vortex
lattice is to the positional order of vortices. In the Abrikosov phase, fluctuations of the vortex
lattice destroy superconductivity but not long-range periodic order [17]. In two-dimensions,
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screening of vortices drives TKT in an infinite superconductor in zero field to zero. Both of
the above effects may be important for n-atic order on a sphere. It has been shown that in
the parameter region n2 Kn/κ � 1/4, the effect of shape fluctuations is irrelevant [9] and
will not lead to qualitative changes in our results. For n2 Kn/κ � 1/4, on the other hand,
shape fluctuations are relevant. The interaction between the vortices is screened according to
the massive sine-Gordon theory and hence is equivalent to a neutral Yukawa gas on a sphere.
Consequently, due to this screening effect the KT transition is suppressed at finite temperature,
and vortices are always unbound for a non-zero temperature.

In [18], Evans has discussed the shape changes of the n-atic Hamiltonian in the opposite
limit (high-temperature limit) to the mean-field limit described in this paper. Using the lowest
Landau level approximation, the effect of thermal fluctuations are discussed. We agree with
him in that the amplitudes of deformations have zero thermal average. We are not sure,
however, if this approximation is valid in the high-temperature phase where thermally excited
vortex–antivortex pairs are always unbound, since the lowest Landau levels include only the
ground state vortices. Thus we believe the effects of fluctuations on the shape changes in the
disordered state deserve further investigation.

Acknowledgment

This work was supported by grant no 2000-2-11200-002-3 from the BRP program of the
KOSEF.

Appendix A. Lowest energy manifold with topological vortices

One possible form of the eigenfunctions of �̄ has the structure of sinn θ

−�̄ sinn θ = n sinn θ. (A.1)

The complete spectrum and the eigenfunctions are derived in appendix B. Introducing the
projection representation, we can reparametrize the sphere using the stereographic projection
defined by

z = tan
θ

2
eiφ; z∗ = tan

θ

2
e−iφ, (A.2)

the inverse transformation of which gives

θ = 2 tan−1
√

z∗z; φ = 1

2i
ln

z

z∗ . (A.3)

The corresponding metric tensor, spin connection and surface Laplacian �̄ can be written as
follows.

ḡab = 2

(1 + |z|2)2

(
0 1
1 0

)
, (A.4a)

Āz = − 1

2iz

1 − |z|2
1 + |z|2 ; Āz∗ = 1

2iz∗
1 − |z|2
1 + |z|2 , (A.4b)

�̄ = (1 + |z|2)2[(∂z∂z∗ − Āz Āz∗) − 2in( Āz∂z∗ + Āz∗∂z)]. (A.4c)

The eigenfunction sinn θ can be written as

f (|z|2) =
(

2|z|
1 + |z|2

)n

. (A.5)
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This eigenfunction has vortices at |z| = 0 and ∞. Now, the vortices can be arbitrarily placed
by multiplying Q(z) which is a function of z alone. Since �̄ f (|z|2) = −n f (|z|2),

−�̄[ f (|z|2)Q(z)] = n[ f (|z|2)Q(z)], (A.6)

which implies that the full eigenfunctions of �̄ are the product of f (|z|2) and the arbitrary
function Q(z). In particular, for n = 1, we have

f (|z|2) = 2|z|
1 + |z|2 . (A.7)

By taking Q(z) = (z − z1)(z − z2)/z,

ψ ∝ 2|z|
1 + |z|2

(z − z1)(z − z2)

z
, (A.8)

which means that ψ has the vortices at z = z1 and z2 and that ψ goes to z1z2e−iφ as z goes to
0 and ψ goes to eiφ as z goes to ∞. This means there is an enormous degeneracy in the lowest
energy manifold of the harmonic terms. In the lowest energy manifold of the harmonic terms,
ψ will have exactly 2n zeros specifying the vortex positions, each of strength 1/n.

In view of this vortex strength and distribution, we choose Q(z) as

Q(z) = α

zn

2n∏
j=1

(z − z j ), (A.9)

where α, z j are arbitrary and z j �= zk if j �= k. By minimizing Heff with the degenerate
eigenfunctions of �̄,

ψ = α

(
2|z|

1 + |z|2
)n 1

zn

2n∏
j=1

(z − z j ), (A.10)

the nonlinear terms pick out the set {z j | 1 � j � 2n} that gives the lowest energy for Heff .
This set {z j} also gives |ψ|, vortex positions and the shape changes ρ(Ω) of the membrane.
In terms of spherical coordinates,

ψ ∝
2n∏
j=1

(
sin

θ

2
cos

θ j

2
− cos

θ

2
sin

θ j

2
ei(φ−φ j )

)
= W (�, {� j}). (A.11)

Appendix B. Complete spectrum of ∆̄

The covariant surface Laplacian for the harmonic Hamiltonian Hhar ,

�̄ = ∂2
θ + cot θ∂θ + (cosec θ∂φ + in cot θ)2, (B.1)

would be encountered in the Hamiltonian describing the field of a Dirac magnetic monopole.
The Schrödinger equation of an electron on a spherical shell under the influence of a magnetic
monopole at the origin plus the Dirac string extended along the negative z-axis can be cast as

− 1
2 (∇ − iA)2� = ε� (B.2)

with

Aθ = 0; Aφ = g(1 − cos θ)

sin θ
+

F

2π sin θ
, (B.3)

where g is the strength of the monopole and F the magnitude of the flux. Setting g = n and
F = −2πn, we find Aφ = −n cot θ , and so (∇ − iA)2 is exactly identical to �̄. Hence, the
differential operator −�̄ is equivalent to the Hamiltonian of a Dirac monopole of strength n at
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the origin with an infinitely long and thin solenoid carrying flux 2πn along the positive z-axis.
Following the method in [19], we define the ‘angular momentum’ operator

J ≡ −ir × (∇ − iA) − nr (B.4)

with the associated ladders and z-component

J± = Jx ± iJy

= e±iφ

[
±∂θ + i cot θ(∂φ + in) − n sin θ

1 + cos θ

]
; (B.5)

Jz = −i(∂φ + in) − n (B.6)

which obeys the formal commutation relations

[J, �̄] = 0; [Ji , J j ] = iεi jk Jk, (B.7)

for sin θ �= 0. Then we find

−�̄ = J 2 − n2, (B.8)

and the eigenvalue problem reduces to that of the ‘angular momentum’ squared. Let us denote

J 2ψ(Ω) = l(l + 1)ψ(Ω), (B.9)

where we set

ψ(Ω) = eimφ Pm(cos θ); m = 0,±1,±2, . . . . (B.10)

Then

Jzψ(Ω) = mψ(Ω). (B.11)

The eigenvalues of J 2 are found to be given by l(l + 1) with

l = k + 1
2 (|m + n| + |m − n|)

k = 0, 1, 2, 3, . . . ; m = 0,±1,±2, . . . .
(B.12)

The corresponding orthonormal eigenfunctions are

ψ(k,m)(Ω) = αkm

(
1 − cos θ

2

)|m+n|/2(1 + cos θ

2

)|m−n|/2

P(|m+n|,|m−n|)
k (cos θ)eimφ, (B.13)

where P(a,b)
k denote Jacobi polynomials, and

αkm =
[

k!�(|m + n| + |m − n| + k + 1)�(|m + n| + |m − n| + 2k + 1)

4π�(|m + n| + k + 1)�(|m − n| + k + 1)

] 1
2

. (B.14)

The complete spectrum of the operator −�̄ is

ε = {k + 1
2 (|m + n| + |m − n|)}{k + 1 + 1

2 (|m + n| + |m − n|)} − n2

= [max(n, |m|) + k][max(n, |m|) + k + 1] − n2 (B.15)

where k = 0, 1, 2, . . . and m = 0,±1,±2, . . .. Hence the ground states (k = 0, n � |m|) are
given by

ε = n(n + 1) − n2 = n. (B.16)

The corresponding ground state orthonormal eigenfunction has the form

ψ(0,m)(Ω) = α0m

(
sin

θ

2

)n+m(
cos

θ

2

)n−m

eimφ (B.17)

which is the same as that in equation (A.11).
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